PEDOT Encapsulated FeOF Nanorod Cathodes for High Energy Lithium-Ion Batteries.

نویسندگان

  • Xiulin Fan
  • Chao Luo
  • Julia Lamb
  • Yujie Zhu
  • Kang Xu
  • Chunsheng Wang
چکیده

Conversion-reaction cathodes can potentially double the energy density of current Li-ion batteries. However, the poor cycling stability, low energy efficiency, and low power density of conversion-reaction cathodes limit their applications for Li-ion batteries. Herein, we report a revolutionary advance in a conversion-reaction cathode by developing a core-shell FeOF@PEDOT nanorods, in which partial substitution of fluorine with oxygen in FeF3 substantially enhance the reaction kinetics and reduce the potential hysteresis, while conformal nanolayer PEDOT coating provides a roubst fast electronic connection and prevents the side reactions. The FeOF@PEDOT nanorods deliver a capacity of 560 mA h g(-1) at 10 mA g(-1) with an energy density of >1100 W h kg(-1), which is more than two times higher than the theoretical energy density of LiCoO2. The FeOF@PEDOT nanorods can maintain a capacity of ~430 mA h g(-1) at 50 mA g(-1) (840 W h kg(-1)) for over 150 cycles with capacity decay rate of only 0.04% per cycle, which is 2 orders of magnitude lower than the capacity decay rate ever reported among all conversion-reaction cathodes. Detailed characterizations were conducted to identify the structure and mechanism responsible for these significant improvements that could translate into a Li-ion cell with a 2× increase in energy density.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New nanostructured Li2S/silicon rechargeable battery with high specific energy.

Rechargeable lithium ion batteries are important energy storage devices; however, the specific energy of existing lithium ion batteries is still insufficient for many applications due to the limited specific charge capacity of the electrode materials. The recent development of sulfur/mesoporous carbon nanocomposite cathodes represents a particularly exciting advance, but in full battery cells, ...

متن کامل

Electrode Materials for Lithium Ion Batteries: A Review

Electrochemical energy storage systems are categorized into different types, according to their mechanisms, including capacitors, supercapacitors, batteries and fuel cells. All battery systems include some main components: anode, cathode, an aqueous/non-aqueous electrolyte and a membrane that separates anode and cathode while being permeable to ions. Being one of the key parts of any new electr...

متن کامل

Bottom-up approach toward single-crystalline VO2-graphene ribbons as cathodes for ultrafast lithium storage.

Although lithium ion batteries have gained commercial success owing to their high energy density, they lack suitable electrodes capable of rapid charging and discharging to enable a high power density critical for broad applications. Here, we demonstrate a simple bottom-up approach toward single crystalline vanadium oxide (VO2) ribbons with graphene layers. The unique structure of VO2-graphene ...

متن کامل

An Effective Nitrogen Doping Technique for Improving the Performance of Lithium Ion Batteries with CNT Based Electrodes

Lithium ion batteries are among the most used rechargeable batteries in the world. Carbon nanostructures including carbon nanotubes (CNTs) are considered as important electrode materials for this kind of batteries. Therefore improving the performance of these carbon based electrodes in Lithium ion batteries is an important issue and attracts much attention in the battery community. In this manu...

متن کامل

In situ formed carbon bonded and encapsulated selenium composites for Li–Se and Na–Se batteries

As high capacity cathodes for Li-ion and Na-ion batteries, carbon bonded and encapsulated selenium composites (C/Se) with a high loading content of 54% Se were synthesized by the in situ carbonization of a mixture of perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) and selenium (Se) in a sealed vacuum glass tube. Because Se is physically encapsulated and chemically bonded by carbon, the sh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 15 11  شماره 

صفحات  -

تاریخ انتشار 2015